Bio 1M: Speciation (complete)

1 How are species defined?

- Conceptually, we define species as “evolutionary units”:
 - Individuals within a species are evolving together
 - Individuals of different species evolve independently
- It is difficult to make this conceptual definition into a practical definition
 - **Answer**: i.e., one that we can apply to decide how to group organisms into species
 - Life is complex

1.1 Biological species concept

- Biological species are defined by reproductive isolation
- Different biological species either:
 - Don’t breed in nature
 - Breed but fail to produce offspring
 - Produce **inviable** offspring – offspring do not develop to adulthood
 - Produce **sterile** offspring – offspring that cannot themselves reproduce

Mechanisms of isolation

- Mechanisms of isolation are often divided into two classes:
 - **Prezygotic** isolation refers to any mechanism that prevents successful mating
 - **Postzygotic** isolation refers to any mechanism that prevents offspring from producing offspring of their own
 - “Zygote” means a cell formed by the fusion of a sperm and an egg

Mechanism examples

- Pre- or post-?
 - Different malaria parasites breed inside different hosts
 - Different species of doves can nest together, but eggs fail to hatch or chicks fail to grow
 - The offspring of horses and donkeys grow up to be healthy, infertile adults
 - Sea urchin eggs cannot be penetrated by sperm from other species
 - Species of pine trees release and receive pollen and different times of year
Pre- vs. post-zygotic mechanisms

- Which should be adaptively favored?
 - **Answer:** Pre-zygotic mechanisms mean less wasted effort
 - **Answer:** When post-zygotic isolation is happening, there will be natural selection for pre-zygotic isolation
 - **Answer:** Example: it takes a lot of resources for a horse to birth and raise a mule, but there is no long-term fitness benefit
 * **Answer:** This is presumably why they in fact rarely mate

Disadvantages of the biological species concept

- **Answer:** Doesn’t apply to asexual species
- **Answer:** Not practical for extinct species
- **Answer:** May be hard to evaluate
 - **Answer:** What if two populations rarely come into contact because of geographic distance?

1.2 Morphological species concept

- Morphological species are defined to be different if they **look** different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - **Answer:** Subjective, prone to disagreements
 - **Answer:** There are groups that look very similar but can’t produce viable offspring
 - **Answer:** Not clear how definition relates to our conceptual definition of evolutionary units

1.3 Ecological species concept

- An ecological species is a set of related organisms occupying the same ecological **niche**
 - Exploit similar resources
 - Tolerate similar environments
 - Face similar natural enemies
- Commonly used for small things, particularly small asexual things
1.4 Phylogenetic species concept

- A phylogenetic species is a monophyletic group of populations
 - Must not be divisible into smaller species
- A monophyletic group is a group defined by a single common ancestor
 - All descendants of the ancestor must be in the group

Phylogenetic species concept

- Advantages
 - Well defined (as long as you know what a population is)
 - Broadly applicable
- Disadvantages
 - Hard to estimate phylogenies
 - Requires a lot of information about populations
- Believers in the phylogenetic species concept recognize a lot of species

Defining species

- Defining species formally can be very tricky
 - No one way is agreed to be the best
- Usually we know more or less what we mean by a species, though

Generating species

- We believe new species are generated from old species
- One species can gradually evolve into another
 - We can’t say exactly when the switch occurs
- Species can also diverge: one species splits into two species
 - Divergence is the origin of diversity

How do species split?

- Genetic isolation
- Genetic divergence
- Which comes first?
 - Answer: Usually isolation: with too much gene flow populations can’t diverge
 - Answer: There is often a loop: isolation allows divergence, which causes natural selection for more isolation
2 Species divergence in allopatry

• Allopatry refers to organisms living apart from each other

• If two populations are isolated from each other, we would expect that they might diverge. Why?

 – Answer: Genetic drift
 – Answer: Natural selection
 * Answer: Different environments, or different adaptive mutations

• How can two populations of the same species be isolated from each other?

2.1 Dispersal

• Isolated populations of the same species can develop if some individuals disperse (move) to a new area and colonize it (establish a new population).

• Since colonizing populations are usually small, we expect founder effects and drift to be particularly important

2.2 Vicariance

• Isolated populations of the same species can develop when a population is split by a geographical or ecological barrier

• Such splits are called vicariance events.

 – Rivers change course, mountains appear or disappear, continents split and join
 – When temperature changes, some species may only be able to survive in “refuges”, small, protected parts of their original range

Example: ratites

• The ancestors of today’s ostriches, emus, etc. were isolated when the super-continent of Gondwanaland drifted apart starting about 140 million years ago

3 Species divergence in sympatry

• Sympathy refers to organisms living in the same geographic area

• In general, it should be hard for populations of the same species living in sympathy to diverge.
- **Answer:** Gene flow
- **Answer:** Competition

• Are there exceptions to this expectation?
 - **Answer:** Seed crackers?
 - **Answer:** Hawthorn flies
 - **Answer:** Soapberry bugs

3.1 Disruptive selection

Divergence by partitioning habitats

• Insects that feed on many different plants may be subject to divergent selection
 - An individual may do most of its feeding on one particular plant

• In some cases, gene flow will prevent divergence

• In other cases, individuals may mate preferentially with individuals with the same host plant, and divergence may occur

3.2 Genetic incompatibility

• Divergence can also occur when mutation causes genetic incompatibility
 - If two populations are in the same place, but can’t produce fertile offspring, they are reproductively isolated

• Genetic incompatibility is less likely to produce divergence than physical separation
 - **Answer:** The populations will still compete, and one may drive the other extinct
 - **Answer:** Or, reproductive isolation and disruptive selection may work together to make divergence more likely

 * **Answer:** or less unlikely

Polyploidy

• Reproductive mistakes can occur that produce individuals with extra copies of each chromosome

• Sometimes these **polyploid** individuals survive, and can even mate

• This produces instant reproductive isolation

• It can also provide material for new genetic innovation
 - **Answer:** Two copies of each gene, so it may be possible to keep one and mutate one
4 Reuniting

• What happens when isolated populations come back into contact?

• Usually this happens when a geographic barrier disappears
 – a land bridge forms between an island and the continent
 – a river changes course

4.1 Fusion

• When two isolated populations come into contact, they may fuse – go back together
 – Adaptive differences may be small
 – Adaptive differences may be overwhelmed by gene flow

4.2 Reinforcement

• In some cases, hybrid offspring may have low fitness
 – Answer: Incompatible alleles
 – Answer: Disruptive selection

• In these cases we expect natural selection for traits that reinforce the distinction between the two species
 – They avoid mating, using coloration, timing, courtship rituals

Meadowlarks

• Eastern and Western meadowlarks have hybrid zones in the Great Plains

• Hybrids don’t reproduce well
 – Probably due to incompatible alleles after evolving separately

• They have evolved to avoid inter-breeding:
 – Answer: They have different songs
Sticklebacks

- Closely related freshwater sticklebacks live on the bottom (benthic) or in the water column (limnetic)
- Benthic sticklebacks arrived first (from the ocean), and are highly adapted to live on the bottom
- Limnetic sticklebacks arrived later
- The two groups evolved to avoiding breeding with each other
 - Answer: Courtship rituals

4.3 Hybrid zones

- When hybrid offspring are functional, and well-adapted to the overlap zone, there may be a zone where hybrids occur
- Not always clear when we should consider the species to be different
 - What if species B has hybrid zones with A and C but A and C don’t mate in nature?

4.4 Exclusion

- One species might eliminate the other species, either by competition, or by better success in mating
 - Warblers competing for mates
 - Modern humans

4.5 New species

Sunflowers

- A cool species of sunflower
 - Resembles natural hybrids from a hybrid zone
 - Is that how it arose?
- Breeding experiments suggest that it’s likely
- Why is this surprising?
 - Answer: Rarely seems to happen
- **Answer**: If the hybrid has high fitness, why would reproductive isolation evolve?

- **How did it happen?**
 - **Answer**: Probably because of an unusual adaptation: they hybrids live in drier climates than either of the “parent” species

Conclusion

- The diversity we see in the world arises from speciation events; mostly by single species splitting into two

- Species splits typically involve isolation and divergence
 - Isolation can happen allopatrically or sympatrically
 - New species can also sometimes arise from hybridization between related species

- Defining species can be complicated
 - Particularly if we want definitions that include both asexual and sexual species